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Francis Bach (INRIA and ENS Paris)

Optimization for machine learning

Abstract: In these lectures, I will present recent results relating optimization and machine learning,
with a particular focus on exponentially convergent stochastic algorithms for convex problems and
global convergence of gradient descent for specific non-convex problems.

Arnaud Doucet (Oxford)

Differentiable Particle Filtering

Abstract: Particle Filters (PF) are a powerful class of methods for performing state inference in
state-space models and for computing likelihood estimates for fixed parameters. Resampling is a
key ingredient of PF, necessary to obtain low variance estimates. However, resampling operations
result in the simulated likelihood function being non-differentiable with respect to parameters, even
if the true likelihood is itself differentiable. These resampling operations also yield high variance
gradient estimates of the Evidence Lower Bound (ELBO) when performing variational inference. By
leveraging Optimal Transport (OT) ideas, we introduce differentiable PF, providing a differentiable
simulated likelihood function. This allows one to perform parameter estimation via maximization of
the simulated likelihood using gradient techniques and to compute low variance gradient estimates for
variational inference. We provide consistency results and demonstrate the performance of differentiable
PF on various examples.

Arnaud Doucet (Oxford)

Controlled Sequential Monte Carlo

Abstract: Sequential Monte Carlo methods, also known as particle methods, are a popular set of
techniques for approximating high-dimensional probability distributions and their normalizing con-
stants. These methods have found numerous applications in statistics and related fields; e.g. for
inference in non-linear non-Gaussian state space models, and in complex static models. Like many
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Monte Carlo sampling schemes, they rely on proposal distributions which crucially impact their perfor-
mance. We introduce here a class of controlled sequential Monte Carlo algorithms, where the proposal
distributions are determined by approximating the solution to an associated optimal control problem
using an iterative scheme. This method builds upon a number of existing algorithms in econometrics,
physics, and statistics for inference in state space models, and generalizes these methods so as to
accommodate complex static models. We demonstrate significant gains over state-of-the-art methods
at a fixed computational complexity on a variety of applications.

Arnaud Doucet (Oxford)

Unbiased Markov chain Monte Carlo

Abstract: MCMC methods provide consistent estimators of integrals as the number of iterations
goes to infinity but typically exhibit a bias after any fixed number of iterations. We will review two
approaches that have been recently proposed by Glynn and Rhee (2014) and Jacob, O’Leary and
Atchade (2019) to remove the bias using random truncations and coupling ideas. We will illustrate
how these methods can be applied to complex algorithms. We will present conditions under which
the resulting unbiased estimators can be computed in expected finite time and exhibit finite variance.
Finally, we will illustrate the benefits and limitations of such ideas.

Tony Lelièvre (CERMICS and École des Ponts Paris))

Sampling problems in computational statistical physics

Abstract: Computational statistical physics is typically a domain where efficient sampling methods
are crucial. The objective is indeed to obtain macroscopic properties of materials starting from a
microscopic description at the molecular level, using ensemble averages (thermodynamic properties)
or averages over paths (dynamical properties). Applications are numerous in very different scientific
fields such as molecular biology, chemistry or materials science. The objective of these lectures will be,
starting from some prototypical sampling problems raised in statistical physics, to introduce general
purpose algorithms which are useful to sample multimodal distributions, distributions supported on
manifolds and metastable trajectories. More precisely, the first lecture will be devoted to free energy
adaptive biasing techniques, and their analysis using entropy techniques or techniques useful to prove
the convergence of stochastic algorithms. In the second lecture, we will present Hamiltonian Monte
Carlo methods to sample measures on submanifolds of Rn. Finally, the third lecture will be devoted
to a discussion of the link between metastable dynamics and jump Markov processes, using the notion
of quasi-stationary distribution.

Jesus Maŕıa Sanz Serna (Madrid)

Numerical integrators for the Hamiltonian Monte Carlo method

Abstract: When using the Hamiltonian Monte Carlo (HMC) method and its variants, most com-
putational effort goes into the numerical simulation of the Hamiltonian dynamics. In practice, that
simulation is (almost) always performed by means of the Leapfrog/Verlet/Störmer integrator. In my
talks I will first explain why the demands that HMC imposes on the integrator have a number of
peculiar features not present in other uses of numerical methods for ordinary differential equations. I
will then explain the reasons why Leapfrog is so successful in some settings. Finally I will argue that,
nevertheless, Leapfrog is not in general the optimal integrator and discuss alternative algorithms that
afford an enhanced performance.
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Aaron Smith (Ottawa)

Methods for Bounding MCMC Error: Recent Advances and Comparisons

Abstract: One of the main questions in the theory of Markov chains is to bound or estimate the rate
at which a chain, or its ergodic averages, converges to a stationary measure. In the context of MCMC
or computer science, this rate determines the efficiency of an algorithm; in statistical physics this might
determine the qualitative behaviour of a system being modeled, while in other areas of probability a
rapidly-mixing chain might be used to prove efficient concentration inequalities. Although the different
communities studying Markov chain convergence are aware of each other, methods have not always
traveled quickly between them. One major difficulty has been the different systems being studied - in
particular, many probabilists and statistical physicists work on finite state spaces, while statisticians
tend to be interested in continuous state spaces.
The primary goal of this lecture series is to discuss some recent advances in estimating convergence
of Markov chains that may be relevant to statisticians interested in MCMC. We will start with an
overview of important parts of the classical theory of Markov chain convergence. This will include the
mainstays of MCMC analysis (drift-and-minorization and its frequent companion, contraction) and
some methods that are much more popular in other communities (conductance and canonical path
approaches).
From there, we will explore the relevance of various spectral methods to MCMC analysis. This
will include some recent work on basic path bounds, the extension of the spectral profile method
to continuous state spaces, and the sharpness of the spectral profile. We will also explore some
recent breakthroughs involving the conductance method. This will include some work on both new
methods for proving conductance inequalities and using profile-based methods to obtain sharp bounds.
Throughout, there will be an emphasis on illustrative examples and and comparison of these methods
to classical methods.
Finally, we will devote some time to survey (de-)coupling methods that have been developed in the
statistics community. We will emphasize the distinction between coupling methods for analyzing the
convergence of chains and those for analyzing the convergence of ergodic averages.
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Joris Bierkens (TU Delft)

Spectral theory and asymptotic variance of piecewise deterministic samplers

Abstract: Markov Chain Monte Carlo (MCMC) is an essential computational tool in quantitative
fields such as Bayesian statistics, physics and machine learning. In recent years piecewise deterministic
Markov processes (PDMPs) have emerged as a promising alternative to classical MCMC algorithms.
In this talk PDMP based algorithms such as the Zig-Zag Sampler and the Bouncy Particle Sampler will
be introduced and recent progress in our understanding of the underlying processes will be presented.
My aim is to zoom in on two types of convergence properties, as described by (i) the asymptotic
variance and (ii) the spectral properties of the process. As it turns out, these can sometimes provide
apparently conflicting information.

Alain Durmus (ENS Paris Saclay)

Quantitative convergence of Unadjusted Langevin Monte Carlo and application to stochas-
tic approximation

Abstract: Stochastic approximation methods play a central role in maximum likelihood estimation
problems involving intractable likelihood functions, such as marginal likelihoods arising in problems
with missing or incomplete data, and in parametric empirical Bayesian estimation. Combined with
Markov chain Monte Carlo algorithms, these stochastic optimisation methods have been successfully
applied to a wide range of problems in science and industry. However, this strategy scales poorly to
large problems because of methodological and theoretical difficulties related to using high-dimensional
Markov chain Monte Carlo algorithms within a stochastic approximation scheme. This paper pro-
poses to address these difficulties by using unadjusted Langevin algorithms to construct the stochastic
approximation. This leads to a highly efficient stochastic optimisation methodology with favourable
convergence properties that can be quantified explicitly and easily checked. The proposed methodol-
ogy is demonstrated with three experiments, including a challenging application to high-dimensional
statistical audio analysis and a sparse Bayesian logistic regression with random effects problem.

Ioannis Kontoyannis (Cambridge)

Variable-dimension MCMC samplers for variable-memory Markov models

Abstract: A new Bayesian modelling framework was recently developed for discrete time series,
based on the class of higher-order, variable-memory Markov chain models. In particular, an exact
inference algorithm was introduced, which identifies the a posteriori most likely models and computes
their exact posterior probabilities. But it is computationally infeasible beyond the top 5 or 10 most
likely models. To facilitate further, effective exploration of the posterior distribution on both models a
parameters, we describe a new family of variable-dimension Markov chain Monte Carlo samplers. Their
performance is illustrated both on simulated and on real-world data sets, for model selection, Markov
order estimation, and parameter estimation. The proposed samplers are found to perform at least as
well as – and usually better than – the most commonly used and the state-of-the-art approaches, in
applications with data from finance, genetics, neuroscience, and animal communication.

Jianfeng Lu (Duke)

Quantitative convergence analysis of hypocoercive sampling dynamics
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Abstract: In this talk, we will discuss some recent advances on quantitative analysis of convergence of
hypocoercive sampling dynamics, including underdamped Langevin dynamics, randomized Hamilto-
nian Monte Carlo, zigzag process and bouncy particle sampler. The analysis is based on a variational
framework for hypocoercivity which combines a Poincare-type inequality in time-augmented state
space and an energy estimate. Based on joint works with Yu Cao (NYU) and Lihan Wang (Duke).

Manon Michel (Université de Clermont-Auvergne)

Using symmetries as an efficiency compass in MCMC

Abstract: This talk will aim at giving some historical perspectives into MCMC developments in
computational physics, with the overall goal to give insights on what could be tomorrow’s more efficient
MCMC schemes. The key concepts will rely on trading the reversibility symmetry for distribution
ones and on extracting local information.

Eric Moulines (École Polytechnique)

Variance reduction for MCMC algorithms

Abstract: New methodologies are presented for the construction of control variates to reduce the
variance of additive functionals of Markov Chain Monte Carlo (MCMC) samplers. I will present three
approaches that we have recently developed.
The first approach defines control variates through the minimization of the asymptotic variance of
the Langevin diffusion over a family of functions, which can be seen as a quadratic risk minimization
procedure. The use of these control variates is theoretically justified. We show that the asymptotic
variances of some well-known MCMC algorithms, including the Random Walk Metropolis and the
(Metropolis) Unadjusted/Adjusted Langevin Algorithm, are close to the asymptotic variance of the
Langevin diffusion.
The second approach relies on a novel discrete time martingale representation for Markov chains.
Our approach is fully non-asymptotic and does not require any type of ergodicity or special product
structure of the underlying density. By rigorously analyzing the convergence properties of the proposed
algorithm, we show that it’s complexity is indeed asymptotically smaller than one of the original
MCMC algorithm.
The third approach combines the use of control functions with the minimisation of an empirical
asymptotic variance estimate. We analyse finite sample properties of the proposed method and derive
convergence rates of the excess asymptotic variance to zero.
We present empirical results carried out on a number of real-world benchmarks showing that our
variance reduction methods achieve significant improvement as compared to state-of-the-art methods
at the expense of a moderate increase of computational overhead.
(Joint work with Alain Durmus, Nicolas Brosse, Sean Meyn, Denis Belomestny, Alexei Naumov, Leonid
Iosispoi, Serguei Samsonov)

Michela Ottobre (Heriot-Watt University Edinburgh)

Uniform in time approximations of stochastic dynamics

Abstract: Complicated models, for which a detailed analysis is too far out of reach, are routinely
approximated via a variety of procedures, for example by use of numerical schemes. When using a
numerical scheme we make an error which is small over small time-intervals but it typically compounds
over longer time-horizons. Hence, in general, the approximation error grows in time so that the results
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of our simulations are less reliable when the simulation is run for longer. However this is not necessarily
the case and one may be able to find dynamics and corresponding approximation procedures for which
the error remains bounded, uniformly in time. We will discuss some criteria and general procedures
to understand when this is possible. We will do this both for approximations generated via numerical
schemes, but also for more general approximation procedures, i.e. averaging.

Daniel Rudolf (Universität Göttingen)

Spectral gap of slice sampling

Abstract: We provide results on Wasserstein contraction of simple slice sampling for approximate
sampling with respect to distributions with log-concave and rotational invariant Lebesgue densities.
This yields, in particular, an explicit quantitative lower bound of the spectral gap of simple slice
sampling. Moreover, this lower bound carries over to more general target distributions depending
only on the volume of the (super-)level sets of their unnormalized density. This allows us to deduce
convergence results of hybrid slice sampling approaches.
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